首页> 外文OA文献 >Mining product adopter information from online reviews for improving product recommendation
【2h】

Mining product adopter information from online reviews for improving product recommendation

机译:从在线评论中挖掘产品采用者信息以改善产品推荐

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We present in this article an automated framework that extracts product adopter information from online reviews and incorporates the extracted information into feature-based matrix factorization formore effective product recommendation. In specific, we propose a bootstrapping approach for the extraction of product adopters from review text and categorize them into a number of different demographic categories. The aggregated demographic information of many product adopters can be used to characterize both products and users in the form of distributions over different demographic categories. We further propose a graphbased method to iteratively update user- and product-related distributions more reliably in a heterogeneous user-product graph and incorporate them as features into the matrix factorization approach for product recommendation. Our experimental results on a large dataset crawled from JINGDONG, the largest B2C e-commerce website in China, show that our proposed framework outperforms a number of competitive baselines for product recommendation.
机译:我们在本文中介绍了一个自动框架,该框架从在线评论中提取产品采用者信息,并将提取的信息合并到基于功能的矩阵分解中,以实现更有效的产品推荐。具体来说,我们提出了一种引导方法,用于从评论文本中提取产品采用者,并将其分类为许多不同的人口统计类别。许多产品采用者的汇总人口统计信息可用于以不同人口统计类别的分布形式来表征产品和用户。我们进一步提出了一种基于图的方法,以在异构用户-产品图中更可靠地迭代更新与用户和产品相关的分布,并将它们作为特征合并到用于产品推荐的矩阵分解方法中。我们从中国最大的B2C电子商务网站JINGDONG上搜集的大型数据集上的实验结果表明,我们提出的框架优于许多竞争性的产品推荐基准。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号